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Talk Outline

r Project Goals and Challenges

r Computation Model for Performance Technology

r TAU Performance Framework
¦ TAU architecture and performance system toolkit

r TAU Application Scenarios
¦ Instrumentation examples

¦ Object-oriented template libraries

¦ Multi-level and asynchronous parallelism

¦ Virtual machine execution

¦ Hierarchical, hybrid parallel systems

r Future Plans and Conclusions
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Performance Needs ÆÆPerformance Technology

r Observe/analyze/understand performance behavior
¦ Multiple levels of software and hardware

¦ Different types and detail of performance data

¦ Alternative performance problem solving methods

¦ Multiple targets of software and system application

r Robust AND ubiquitous performance technology
¦ Broad scope of performance observability

¦ Flexible and configurable mechanisms

¦ Technology integration and extension 

¦ Cross-platform portability

¦ Open layered and modular framework architecture



May 9, 2001 NERSC DOE ACTS Workshop

Complexity Challenges

r Computing system environment complexity
¦ Observation integration and optimization

¦ Access, accuracy, and granularity constraints

¦ Diverse/specialized observation capabilities/technology

¦ Restricted modes limit performance problem solving

r Sophisticated software development environments
¦ Programming paradigms and performance models

¦ Performance data mapping to software abstractions

¦ Uniformity of performance abstraction across platforms

¦ Rich observation capabilities and flexible configuration

¦ Common performance problem solving methods
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General Problem

How do we create robust and ubiquitous
performance technology for the analysis and tuning 
of parallel and distributed software and systems in 
the presence of (evolving) complexity challenges?
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Computation Model for Performance Technology

r How to address dual performance technology goals?
¦ Robust capabilities + widely available methodologies

¦ Contend with problems of system diversity

¦ Flexible tool composition/configuration/integration

r Approaches
¦ Restrict computation types / performance problems
Ø limited performance technology coverage

¦ Base technology on abstract computation model
Ø general architecture and software execution features

Ømap features/methods to existing complex system types

Ø develop capabilities that can adapt and be optimized
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General Complex System Computation Model

r Node: physically distinct shared memory machine
¦ Message passing node interconnection network

r Context: distinct virtual memory space within node

r Thread: execution threads (user/system) in context
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TAU Performance Framework

r Tuning and Analysis Utilities

r Performance system framework for scalable parallel 
and distributed high-performance computing

r Targets a general complex system computation model
¦ nodes / contexts / threads
¦ multi-level: system / software / parallelism

¦ measurement and analysis abstraction

r Integrated toolkit for performance instrumentation, 
measurement, analysis, and visualization
¦ portable performance profiling/tracing facility

¦ open software approach
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Targeted Research Areas

r Performance analysis for scalable parallel systems 
targeting multiple programming and system levels
and the mapping between levels

r Program code analysis for multiple languages 
enabling development of new source-based tools

r Integration and interoperation support for building 
analysis tool frameworks and environments

r Runtime tool interaction for dynamic monitoring and 
adaptive applications
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TAU Architecture

Dynamic
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TAU Instrumentation

r Flexible, multiple instrumentation mechanisms
¦ Source code
Ømanual

Ø automatic using PDT (tau_instrumentor)

¦ Object code
Ø pre-instrumented libraries (e.g., POOMA)

Ø statically linked (e.g., MPI wrapper library)

Ø dynamically linked (e.g., JVM profiling interface)

¦ Executable code
Ø dynamic instrumentation using DynInstAPI (tau_run)

¦ Virtual machine
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TAU Instrumentation (continued)

r Common target measurement interface (TAU API)

r C++ (object-based) design and implementation
¦ Macro-based, using constructor/destructor techniques

¦ Function, classes, and templates

¦ Uniquely identify functions and templates
Ø name and type signature (name registration)

Ø static object creates performance entry

Ø dynamic object receives static object pointer

Ø runtime type identification for template instantiations

¦ C and Fortran instrumentation variants

r Instrumentation and measurement optimization
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TAU Measurement

r Performance information
¦ High resolution timer library (real-time / virtual clocks) 

¦ Generalized software counter library

¦ Hardware performance counters
ØPCL (Performance Counter Library) (ZAM, Germany)

ØPAPI (Performance API) (UTK, Ptools Consortium)

Ø consistent, portable API

r Organization
¦ Node, context, thread levels

¦ Profile groups for collective events (runtime selective)

¦ Mapping between software levels
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TAU Measurement (continued)

r Profiling
¦ Function-level, block-level, statement-level

¦ Supports user-defined events

¦ TAU profile (function) database (PD)

¦ Function callstack

¦ Hardware counts instead of time

r Tracing
¦ Profile-level events

¦ Interprocess communication events

¦ Timestamp synchronization

r User-controlled configuration (configure)
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What Data Can TAU Generate?

r Time spent exclusively and inclusively in each function.

r Number of times each function called.

r Number of profiled functions (subroutines) it called.

r Function mean time/call on all nodes/contexts/threads.

r Exclusive/inclusive time for each function invocation.

r Hardware counts: flops, instructions issued, cycles. 

r Communication functions only or communication + I/O.

r Statement-level and block-level profiling.

r Profile statistics such as exclusive time standard deviation.



May 9, 2001 NERSC DOE ACTS Workshop

TAU Measurement API

r Configuration
¦ TAU_PROFILE_INIT(argc, argv);

TAU_PROFILE_SET_NODE(myNode);
TAU_PROFILE_SET_CONTEXT(myContext);
TAU_PROFILE_EXIT(message);

r Function and class methods
¦ TAU_PROFILE(name, type, group);

r Template
¦ TAU_TYPE_STRING(variable, type);

TAU_PROFILE(name, type, group);
CT(variable);

r User-defined timing
¦ TAU_PROFILE_TIMER(timer, name, type, group);

TAU_PROFILE_START(timer);
TAU_PROFILE_STOP(timer);
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TAU Measurement API (continued)

r User-defined events
¦ TAU_REGISTER_EVENT(variable, event_name);

TAU_EVENT(variable, value);
TAU_PROFILE_STMT(statement);

r Mapping
¦ TAU_MAPPING(statement, key);

TAU_MAPPING_OBJECT(funcIdVar);
TAU_MAPPING_LINK(funcIdVar, key);

¦ TAU_MAPPING_PROFILE (FuncIdVar);
TAU_MAPPING_PROFILE_TIMER(timer, FuncIdVar);
TAU_MAPPING_PROFILE_START(timer);
TAU_MAPPING_PROFILE_STOP(timer);

r Reporting
¦ TAU_REPORT_STATISTICS();

TAU_REPORT_THREAD_STATISTICS();
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TAU Profile Groups (examples)

Profile Group Description Example
TAU_DEFAULT All profile groups --profile

TAU_MESSAGE Message Class --profile message

TAU_PETE PETE --profile pete+message

TAU_IO IO functions --profile io

TAU_FIELD Field functions --profile field+viz

TAU_LAYOUT Field layout --profile layout

TAU_MESHES Meshes --profile sub+meshes

TAU_PARTICLE Particle --profile io+particle

TAU_USER User defined --profile user
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Timing of Multi-threaded Applications

r Capture timing information on per thread basis

r Two alternative
¦ Wall clock time
Øworks on all systems

Ø user-level measurement

¦ OS-maintained CPU time (e.g., Solaris, Linux)
Ø thread virtual time measurement

r TAU supports both alternatives
¦ CPUTIME module profiles user+system time

r PAPI thread timing
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TAU Analysis

r Profile analysis
¦ Pprof
Ø parallel profiler with texted based display

¦ Racy
Ø graphical interface to pprof

r Trace analysis
¦ Trace merging and clock adjustment (if necessary)

¦ Trace format conversion (ALOG, SDDF, PV, Vampir)

¦ Vampir (Pallas)
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Using PPROF
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Using RACY

Bargraph function profile

Click middle mouse button over n,c,t 0,0,0 to see 
the textual profile of node 0, context 0, thread 0
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Using RACY (continued)

Click the third mouse button over a function 
to highlight it in all racy windows. 
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Using RACY (continued)

Selected Function Profile

Node Profile
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TAU Status 

r Usage (selective)
¦ Platforms
Ø IBM SP, SGI Origin 2K, Intel Teraflop, Cray T3E, HP, Sun, 

Windows 95/98/NT, Alpha/Pentium Linux cluster, IA-64

¦ Languages
ØC, C++, Fortran 77/90, HPF, pC++, HPC++, Java, OpenMP

¦ Communication libraries
ØMPI, PVM, Nexus, Tulip, ACLMPL

¦ Thread libraries
Ø pthreads, Tulip, SMARTS, Java,Windows

¦ Compilers
ØKAI, PGI, GNU, Fujitsu, Sun, Microsoft, SGI, Cray, IBM
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TAU Status (continued)

¦ Application libraries
ØBlitz++, A++/P++, ACLVIS, PAWS

¦ Application frameworks
ØPOOMA, POOMA-2, MC++, Conejo, PaRP

¦ Other projects
ØACPC, University of Vienna: Opus/HPF

ØKAI and Pallas: OpenMP/MPI

r TAU profiling and tracing toolkit (Version 2.8)

r Extensive 70-page TAU User’s Guide

r http://www.acl.lanl.gov/tau

r http://www.cs.uoregon.edu/research/paracomp/tau
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TAU Application Scenarios

r Instrumentation examples
¦ Instrumentation of C++ source and templates

¦ Instrumentation of multi-threaded code

r Object-oriented (C++) template libraries
¦ Template-derived code performance measurement

¦ Array classes and expression transformation

¦ Source code performance mapping

r Multi-level and asynchronous computation
¦ Multi-threaded parallel execution

¦ Asynchronous runtime system scheduling

¦ Parallel performance mapping
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TAU Application Scenarios (continued)

r Hardware performance measurement
¦ Integration of external performance technology

¦ Cross-platform hardware counter API

r Virtual machine execution
¦ Abstract thread-based performance measurement

¦ Performance measurement integration in virtual machine

r Hierarchical, hybrid (mixed model) parallel systems
¦ Portable shared memory and message passing APIs

¦ Combined task and data parallel execution

¦ Performance system configuration and model mapping
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C++ Instrumentation Using TAU API

int main(int argc, char **argv)

{

TAU_PROFILE(“main()”, “int (int, char **)” TAU_DEFAULT);

TAU_PROFILE_TIMER(ft, “For-loop-main”, “ “, TAU_USER);

TAU_PROFILE_START(ft);

for (int j = 0; j < N; j++)

{

cout <<“Something…”<<endl;

}

TAU_PROFILE_STOP(ft);

} // routines & methods need just one TAU_PROFILE
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Instrumentation of C++ Templates Using TAU API

template<class T, unsigned Dim, class M, class C>

void Field<T,Dim,M,C>::initialize(

Mesh_t&  m,
FieldLayout<Dim>& l, const Bconds<T,Dim,M,C>& bc, 

const GuardCellSizes<Dim>& gc) 

{

TAU_TYPE_STRING(taustr, “void (Mesh_t,” +CT(l) + “, “ + 
CT(bc)+ “, “ + CT(gc) + “ )” );

TAU_PROFILE(“Field::initialize()”, taustr, TAU_USER);

BareField<T,Dim>::initialize(l,gc);

store_mesh(&m, false);

}
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Multi-threaded Instrumentation Using TAU API

void *threaded_func (void *data)

{

TAU_REGISTER_THREAD();

TAU_PROFILE(“threaded_func()”, “void * (void *)”,             
TAU_DEFAULT);

// do work here …

}

int main()

{

TAU_PROFILE(“main()”, “int ()”, TAU_DEFAULT);

ret = pthread_create(&tid, NULL, threaded_func, NULL);

// …

}
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C++ Template Instrumentation (Blitz++, PETE)

r High-level objects
¦ Array classes

¦ Templates (Blitz++)

r Optimizations
¦ Array processing

¦ Expressions (PETE)

r Relate performance 
data to high-level 
statement

r Complexity of 
template evaluation

Array expressions
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Standard Template Instrumentation Difficulties

r Instantiated templates result in mangled identifiers

r Standard profiling techniques / tools are deficient
¦ Integrated with proprietary compilers

¦ Specific systems platforms and programming models

Uninterpretable routine names
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TAU Instrumentation and Profiling

Performance data presented
with respect to high-level
array expression types

Profile of
expression
types

Graphical pprof
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TAU and SMARTS: Asynchronous Performance

r Scalable Multithreaded Asynchronuous RTS
¦ User-level threads, light-weight virtual processors

¦ Macro-dataflow, asynchronous execution interleaving 
iterates from data-parallel statements

¦ Integrated with POOMA II (parallel dense array library)

r Measurement of asynchronous parallel execution
¦ Utilized the TAU mapping API

¦ Associate iterate performance with data parallel statement

¦ Evaluate different scheduling policies

r “SMARTS: Exploting Temporal Locality and Parallelism 
through Vertical Execution” (ICS '99)
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TAU Mapping of Asynchronous Execution

With mapping

Without mapping

Two threads
executing

POOMA / SMARTS
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With and Without Mapping (Thread 0)

Thread 0 blocks
waiting for iterates

Without mapping

With mapping
Iterates get lumped together

Iterates distinguished
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With and Without Mapping (Thread 1)

Without mapping

With mapping

Iterate performance mapped
to array statement 

Array initialization performance
correctly separated

Array initialization performance lumped

Performance associated with ExpressionKernel object
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TAU Profiling of SMARTS Scheduling

Iteration
scheduling
for two array
expressions
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SMARTS Tracing (SOR) – Vampir Visualization

r SCVE scheduler used in Red/Black SOR running on 
32 processors of SGI Origin 2000

Asynchronous,
overlapped
parallelism
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TAU and PAPI (NAS  Parallel LU)

r SGI Power Onyx (4 processors, R10K), MPI

r Floating point
operations

r Cross-node
full / routine
profiles

r Full FP
profile for
each node

r Counts in
place of time

Percentage
profile
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TAU and PAPI (Matrix Multiply)

r Data cache miss comparison, 

r “regular” vs. “strip-mining” execution

r 512x512
32 KB (P)
2 MB (S)

r Regular
causes
4.5 times
more
misses
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Virtual Machine Execution (Java)

r Profile and trace Java (JDK 1.2+) applications

r No need to modify Java source, bytecode, or JVM

r Implemented using JVMPI (JVM profiling interface)
¦ Fields JVMPI events

r Executes in memory space of JVM
¦ Profiler agent loaded as shared object

r Usage (SciVis, NPAC, Syracuse University)
%  ./configure -jdk=<dir_where_jdk_is_installed>

% setenv LD_LIBRARY_PATH     
$LD_LIBRARY_PATH\:<taudir>/<arch>/lib

%  java -XrunTAU svserver
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TAU Profiling of Java Application (SciVis)

Profile for each
Java thread Captures events

for different Java
packages
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Java Tracing (SciVis) – Vampir Visualization

Performance groups
Timeline display

Parallelism view
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Vampir Dynamic Call Tree View (SciVis)

Per thread call tree

Annotated performance

Expanded
call tree
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Using TAU with JAVA

r For Profiling

% configure -jdk=/usr/local/packages/jdk 

% make clean; make install

% setenv LD_LIBRARY_PATH
$LD_LIBRARY_PATH\:/usr/tau-2.x/solaris2/lib

% java -XrunTAU java_app

% racy

r For Tracing

% configure -jdk=/usr/local/packages/jdk -TRACE

% make clean; make install

% java -XrunTAU java_app

% tau_merge *.trc app.trc; tau_convert -vampir app.trc tau.edf app.pv

% vampir app.pv
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Hybrid Parallel Computation (Java + MPI)

r Multi-language applications and hybrid execution
¦ Java, C, C++, Fortran
¦ Java threads and MPI

r mpiJava (Syracuse, JavaGrande)
¦ Java wrapper package with JNI C bindings to MPI routines

r Integrate cross-language/system performance technology
¦ JVMPI and Tau profiler agent
¦ MPI profiling interface - link-time interposition library
¦ Cross execution mode uniformity and consistency
Ø invoke JVMPI control routines to control Java threads
Ø access thread information and expose to MPI interface

r “Performance Tools for Parallel Java Environments,” Java 
Workshop, ICS 2000, May 2000.
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JVMPI

Thread API

Event
notification

TAU Java Instrumentation Architecture

Java program

TAU package mpiJava package

MPI profiling interface

TAU wrapper

Native MPI library

Profile DB

JNI

TAU
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Parallel Java Game of Life (Profile)

r mpiJava
testcase

r 4 nodes,
28 threads

Node 0

Node 1

Node 2

Thread 4 executes
all MPI routines

Merged Java 
and MPI event
profiles
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Parallel Java Game of Life (Trace)

r Integrated event tracing

r Merged
trace viz

r Node
process
grouping

r Thread
message
pairing

r Vampir
display

r Multi-level event grouping
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Hybrid Parallel Computation (OpenMP + MPI)

r Portable hybrid (mixed model) parallel programming
¦ OpenMP for shared memory parallel programming
Ø fork-join model

Ø loop level parallelism

¦ MPI for cross-box message-based parallelism 

r OpenMP performance measurement
¦ Interface to OpenMP runtime system (RTS events)

¦ Compiler support and integration

r 2D Stommel model of ocean circulation
¦ Jacobi iteration, 5-point stencil

¦ Timothy Kaiser (San Diego Supercomputing Center)
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OpenMP + MPI Ocean Modeling (Trace)

Integrated
OpenMP +
MPI events

Thread
message
pairing
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OpenMP + MPI Ocean Modeling (HW Profile)

% configure -papi=../packages/papi -openmp -c++=pgCC -cc=pgcc
-mpiinc=../packages/mpich/include -mpilib=../packages/mpich/libo 

FP
instructions

Integrated
OpenMP +
MPI events
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Program Database Toolkit (PDT)

r Program code analysis framework for developing 
source-based tools

r High-level interface to source code information

r Integrated toolkit for source code parsing, database 
creation, and database query
¦ commercial grade front end parsers

¦ portable IL analyzer, database format, and access API

¦ open software approach for tool development

r Target and integrate multiple source languages

r http://www.acl.lanl.gov/pdtoolkit
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PDT Architecture and Tools
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PDT Components

r Language front end
¦ parses a C, C++, F77/F90 (soon), Java (next year)
ØEdison Design Group (EDG): C, C++, Java

ØMutek Solutions Ltd.: F77, F90

Ø academic license allows derivative tool distribution

¦ creates an intermediate-language (IL) tree

r IL Analyzer
¦ processes the intermediate language (IL) tree

¦ creates “program database” (PDB) formatted file
Ømore easily read by program or scripting language
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PDT Components (continued)

r DUCTAPE (Bernd Mohr, ZAM, Germany)
¦ C++ program Database Utilities and Conversion Tools

APplication Environment

¦ processes and merges PDB files

¦ C++ library to access the PDB for PDT applications

r Sample Applications
¦ pdbmerge : merges PDB files from separate analyses

¦ pdbconv : converts PDB files to more readable format

¦ pdbtree : prints file inclusion, class hierarchy, and 
call graph information

¦ pdbhtml : ”HTMLizes" C++ source
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PDT and TAU Instrumentation

r Manual source instrumentation
¦ time consuming and error prone

r Automatic source instrumentation
¦ need function and method signature

¦ need parameter type information

¦ need source file and line information

¦ generate instrumentation statement

¦ insert instrumentation in source file

r Use PDT to create/access program code information

r Develop instrumentation tool
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PDT Summary

r Program Database Toolkit (Version 1.2)
¦ EDG C++ Front End (Version 2.41.2)

¦ C++ IL Analyzer and DUCTAPE library

¦ tools: pdbmerge, pdbconv, pdbtree, pdbhtml
¦ standard C++ system header files (KAI KCC 3.4c)

r Fortran 90 IL Analyzer in progress

r Automated TAU performance instrumentation

r Program analysis support for SILOON (ACL CD)

r “A Tool Framework for Static and Dynamic Analysis 
of Object-Oriented Software” (SC 2000)
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TAU Distributed Monitoring Framework

r Extend usability of TAU performance analysis

r Access TAU performance data during execution

r Framework model
¦ each application context is a performance data server

¦ monitor agent thread is created within each context

¦ client processes attach to agents and request data

¦ server thread synchronization for data consistency

¦ pull mode of interaction

r Distributed TAU performance data space

r “A Runtime Monitoring Framework for the TAU 
Profiling System” (ISCOPE ‘99)
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TAU Distributed Monitor Architecture

r Each context has a monitor agent

r Client in separate
thread directs agent

r Pull model of
interaction

r Initial HPC++
implementation

TAU profile database
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Java Implementation of TAU Monitor

r Motivations
¦ More portable monitor middleware system (RMI)

¦ More flexible and programmable server interface (JNI)

¦ More robust client development (EJB, JDBC, Swing)
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r Execution event triggering
¦ Inform external clients of events during execution

r “Server” library
¦ Java trigger modules

¦ JNI link between application and trigger modules

r “Client” trigger library

Trigger Support for Runtime Monitoring

Application
Context Triggers

…

Application
JNI

Client

Client

Client
RMI
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Trigger API and TAU Monitor Application

r Trigger at points of desired monitor access

r Pull TAU profile data

r Unblock trigger and continue
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TAU Future Plans

r Platforms
¦ IA-64, Compaq, Itanium, Sun Starfire, IBM Linux, ...

r Languages
¦ OpenMP, Java (Java Grande), Opus / Java

r Instrumentation
¦ Automatic (F90, Java), DynInst, DITools

r Measurement
¦ Extend tracing support to include event data (e.g., HW counts)
¦ Dynamic performance measurement control

r Displays
¦ Extensible Performance Display Tool (ExPeDiTo)
¦ TraceView 2 (TV2), Pajé

r Performance database and technology
¦ Support for multiple runs
¦ Open API for analysis tool development
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Conclusions
r Complex parallel computing environments require 

robust and widely available performance technology
¦ Portable, cross-platform, multi-level, integrated 

¦ Able to bridge and reuse existing technology

¦ Technology savvy and open

r TAU is only a performance technology framework
¦ General computation model and core services

¦ Mapping, extension, and refinement

¦ Integration of additional performance technology

r Need for higher-level framework layers
¦ Computational and performance model archetypes

¦ Performance diagnosis


